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Abstract In this work we introduce the use of penalized
logistic regression (PLR) to the problem of classification
of MRI images and automatic detection of Alzheimer’s
disease. Classification of sMRI is approached as a large
scale regularization problem which uses voxels as input
features. We evaluate how differences in sMRI pre-
processing steps such as smoothing, normalization,
and template selection affect the performance of high-
dimensional classification methods. In addition, we
compared the relative performance of PLR to a different
approach based on support vector machines. To study
these questions we used data from the Alzheimer Disease
Neuroimaging Initiative (ADNI). The ADNI project follows
a protocol consisting of acquisition of two images in each
session, image correction steps and further evaluation by
experts to obtain the optimized images. We evaluated here
the impact of this optimization process on the performance
of high-dimensional machine learning techniques.

Keywords machine learning; Alzheimer disease; regular-
ization; GLMNET; ADNI; SVM; logistic regression; elastic
net

1 Introduction

The use of machine learning techniques is becoming very
popular in the neuroimaging community (Mur et al. [37];
Pereira et al. [40]). These methods probe data in a multi-
variate fashion, overcoming shortcomings of other more
conventional approaches (Davatzikos [16]). An especially
challenging area of application is the classification and
regression of structural MRI brain images. Many researchers

� Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.ucla.edu/). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this
report. ADNI investigators include (complete listing available at
http://adni.loni.ucla.edu/).

use dimension reduction measures such as the use of input
features generated from predefined regions of interest (ROI)
in the brain (Magnin et al. [35]) or principal component
analysis (PCA) (Teipel et al. [45]) to reduce the size of the
classification problem. Others resort to complicated proce-
dures consisting of several steps based on downsampling of
the images (Vemuri et al. [50]) or image processing methods
(Fan et al. [19]). Recently, Ashburner, Kloppel, Cuignet and
colleagues have shown that voxel-based classification
using kernel methods is not only feasible but produces
very good results when classifying sMRI brain images
(Ashburner [1]; Chu [11]; Cuingnet et al. [12]; Cuingnet
et al. [14]; Kloppel et al. [31]). In a recent comparison
of several of the most successful methods, a linear SVM
method (Kloppel et al. [31]) was one of the best performers
(Cuingnet et al. [13]). This comparison was based on the
use of SPM5 normalization tools and a more recent high-
dimensional normalization method based on diffeomorphic
transformations called DARTEL (Ashburner [1]). Here, we
evaluate the influence of smoothing, normalization, and
template choice on the performance of two classification
methods: penalized logistic regression (PLR) and linear
SVM (hard and soft margin) when combined with a high-
dimensional image warping technique called symmetric
normalization (SyN) (Avants et al. [3]) as implemented
in the Advance Normalization Tools (ANTS) software
package. Penalized logistic regression (PLR) has been used
before in genetics to analyze microarray and sequence
data (Liu et al. [34]; Park and Hastie [39]; Shevade and
Keerthi [44]; Zhu and Hastie [53]) and in the context of
neuroimaging applications PLR has been used before to
analyze fMRI (Ryali et al. [43]; Yamashita et al. [52]) and
regional volumes of sMRI (Casanova et al. [6,7]) data. Here
we use PLR to solve classification problems of very large
size that result when voxels from sMRI images are used as
input features. To our best knowledge we have been the first
to use PLR for AD automatic detection (Casanova et al. [8,
9]) via large-scale regularization. Since we use voxels as
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input features, the sizes of the classification problems we
solve here (≈ 106) are much larger than those reported in the
fMRI literature (usually ∞104) what makes this problem
very challenging. Results related to SyN performance
in the context of high-dimensional classification have
not been reported before and neither SVM has been
compared to penalized logistic regression. The issue of
smoothing is an interesting one. In the investigation by
Kloppel and colleagues, smoothing was not employed,
suggesting this resulted in the best performance. However,
data smoothing is a common practice for other high-
dimensional classification methods (Fan et al. [19]; Vemuri
et al. [50]) and for univariate analyses (Good et al. [24]).

To study these questions, we used data obtained from
the Alzheimer Disease Neuroimaging Initiative (ADNI)
(Mueller et al. [36]). The ADNI project follows a protocol
consisting of acquisition of two images in each session, with
selection of the best image set by expert reviewers (opti-
mized images) for further pre-processing and analysis (Jack
et al. [28]). We made an effort here to evaluate and quantify
the impact of this optimization process on the performance
of high-dimensional machine learning techniques.

2 Material and methods

2.1 ADNI database

Data used in the preparation of this work were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and nonprofit
organizations as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clin-
icians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia, San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions
and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research approximately 200 cognitively
normal older individuals to be followed for 3 years, 400

people with MCI to be followed for 3 years and 200 people
with early AD to be followed for 2 years.

2.2 MRI scans

We used baseline 1.5T T1-weighted MRI data, as described
in the ADNI acquisition protocol (Jack et al. [28]), from
49 subjects with AD and 49 cognitively normal controls
(CN). The selected controls did not convert to MCI across
the follow-up period of 36 months. The average age and
baseline MMSE score was 76 and 29.9 for the control group,
and 75 and 23.6 for the AD group, respectively. The two
groups were matched approximately by sex (AD—24 m,
25 f and CN—25 f, 24 m). The ADNI protocol acquires 2
sets of structural data at each visit. These are rated for image
quality and artifacts by ADNI investigators (Jack et al. [28]).
To enhance standardization across sites and platforms,
the best quality set undergoes additional pre-processing,
including correction for gradient nonlinearity (Jovicich
et al. [29]) and correction for intensity nonuniformity
(Narayana et al. [38]). These optimally pre-processed
images were downloaded from the ADNI database and used
for subsequent analysis in this study.

The raw scans had not undergone any corrections for
nonuniformity or nonlinearity, and were not selected on the
basis of image quality. The raw scans were simply chosen
as the first of the 2 repeat T1 scans available in the ADNI
database per subject. Both the raw (nonoptimized T1 data)
and optimized T1 data were used in our analyses.

2.3 Normalization algorithm

We evaluated the performance of one normalization
algorithm called symmetric diffeomorphic registration.
Symmetric diffeomorphic registration (SyN) uses dif-
feomorphisms (differentiable and invertible maps with
differentiable inverse) to capture both large deformations
and small shape changes (Avants et al. [3]). In the largest
evaluation of nonlinear brain registration algorithms to date,
SyN was found to be a top-ranking performer, providing
among the best results according to overlap and distance
measures and delivering the most consistently high accuracy
across subjects and label sets (Klein et al. [30]). The
SyN normalization procedures have been implemented in
the freely available ANTS software toolbox. A separate
pipedream toolbox is also available, which scripts the
procedures for implementation on grid computing systems.
We created a series of in-house MATLAB wrappers for
accessing the ANTS and pipedream programs allowing user-
tuneable parameter modifications and work-flow definition
with run-time batch script generation for implementation on
the Sun Grid Engine.

2.4 Templates

For ANTS, a variety of templates were used as targets for the
normalization procedure including the high-resolution 1 mm
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ICBM individual subject template (http://www.loni.ucla.
edu/ICBM/) and three study-specific custom templates.
The custom templates included a template consisting of
12 randomly selected normal subjects using the raw T1
data (ADNI12-Raw); a template constructed from the same
12 subjects using the optimized T1 data (ADNI12-Opt); and
a template constructed from 49 AD, 49 CN, and 42 MCI
subjects using the raw T1 data (ADNI140-Raw). The AD
and CN subjects in the ADNI 140 template were also part
of the subject sample for the analyses.

2.4.1 Custom template construction

The 3 custom templates (ADNI12-Raw ADNI12-Opt, and
ADNI140-Raw) were built using a diffeomorphic shape
and intensity averaging technique (Avants and Gee [2];
Avants et al. [3]). Parameters for the template construction
procedure included a four-level Gaussian pyramid as the
multi-resolution strategy and the cross-correlation similarity
metric, with 200 maximum iterations. This yielded an
unbiased average shape and appearance template, as well
as the set of diffeomorphisms and inverse diffeomorphisms
that map from template to each individual. The resulting
study template was normalized to the ICBM T1 label atlas
(http://www.loni.ucla.edu/ICBM/) using SYN (Avants and
Gee [2]; Avants et al. [3]) in order to allow automated label
information to be obtained from each subject. The ICBM
atlas distribution includes a high-resolution T1 image,
segmented labels, and a brain mask. A 2-step normalization
procedure was used to generate a highly accurate skull-
stripped version of the custom templates normalized to the
ICBM atlas. Following the first normalization step to the
ICBM template including the skull, a skull stripped version
of each custom template was generated using the inverse
transformation and the ICBM brain mask applied to the
custom template. A second SYN normalization was then
performed using the skull-stripped custom template and
the skull-stripped ICBM atlas. For each custom template,
these procedures produced a full custom template (with
scalp), a scalp-stripped version of the custom template, a
custom template brain mask, and fully invertible parameters
defining a transform to custom template space to ICBM
atlas space.

ANTS spatial normalization. The native space raw and
optimal T1-weighted images obtained from the ADNI
database for each subject were used for image analysis.
The optimized images had already undergone gradient field
inhomogeneity correction, and N3 bias correction. For the
raw T1 data, we added an N3 bias correction step prior to
normalization. Each subject T1 image was normalized to
each of the custom study templates using SYN (Avants and
Gee [2]; Avants et al. [3]) in a 2-step process. Each subject
image was normalized to the full custom template. The
inverse transformation and the custom template brain mask

were then used to generate a skull-stripped version of the
subject T1 image in native space. A second SYN normaliza-
tion was then performed between the skull-stripped native
T1 image and the skull-stripped custom template. The pre-
viously computed custom template to ICBM normalization
parameters were combined with the native space to custom
template parameters, generating a set of transformation
parameters to bring native space T1 images into ICBM space
with a single resampling step. The nonlinear transformations
from the SYN procedure provide deformation tensor fields
describing the voxel-based shape changes from the template
to each subject’s brain. The Jacobian determinants of these
deformation fields indicate the fractional volume expansion
and contraction at each voxel required to match the
template. These maps can be used directly as in tensor-based
morphometry to determine population differences, or they
can be combined with the segmentation maps to generate
maps of tissue-specific volume change (modulated maps).
The native space grey matter segmentation maps generated
from the SPM8 new segment procedure were brought into
template space using the combined SYN transform. The
Jacobian maps were then multiplied by the respective GM
segmentation maps to limit analysis to grey matter volume
changes. For simplicity, all the machine learning analyses
presented later are restricted to GM tissue only.

2.5 Normalization strategies

Eight normalization strategies were compared utilizing
either the raw or optimized T1 data as input. These included
the ANTS normalization procedure using the 4 templates
(ADNI12-Raw, ADNI12-Opt, ADNI140-Raw, and ICBM)
and the raw or optimized T1 data as input. The modulated
grey matter maps produced from each of these processing
methods were used as the input features to the machine
learning algorithms. In order to limit the machine learning
analysis to the same voxels across the subjects, grey matter
segmentation masks were generated for all of the templates
using the SPM new segment tool. The grey matter template
segmentations were thresholded at 0.5 and binarized to
generate the final mask used across subjects in each of the
machine learning analyses.

2.6 Degree of smoothing

We studied the influence of isotropic Gaussian smoothing
on the performance of voxel-based classification of sMRI
across different normalization strategies. We analyzed three
different degrees of smoothness: (1) No-smoothing; (2) GM
images smoothed with a Gaussian filter with full width half
maximum (FWHM) of 4 mm; and (3) GM images smoothed
with a Gaussian filter with FWHM = 8mm.

2.7 Penalized logistic regression

Logistic regression is a common choice when the response
variable Y is binary. It models the class-conditional
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probabilities through a linear function of predictors:

log

(
Pr(Y = 1/x)

Pr(Y = 2/x)

)
= β0 + xTβ. (1)

In problems where the number of predictors (voxels) is
much greater than the number of examples (ADNI partici-
pants’ GM images in our case), it is necessary to apply reg-
ularization (Tikhonov and Arsenin [46]). The regularization
is performed by adding a penalty term to the estimation cri-
terion having the effect of regulating the complexity of the
model by introducing constraints on the estimated solution.
In this work, we evaluate the performance of PLR, as imple-
mented in the GLMNET library (Friedman et al. [21,22]),
when applied to classification of sMRI images. To estimate
PLR, the GLMNET library solves the problem defined by

min
β0,β∈Rp+1

−C
(
β0, β, xi, yi

)
+ λP (β),

C
(
β0, β

)
=

1

N

N∑
i=1

yi
(
β0 + xT

i β
)

− log
(
1 + e(β0+xT

i β)
)
,

P (β) =

p∑
j=1

[
(1− α)

2
β2
j + α

∣∣βj

∣∣],

(2)

where N is the number of examples (GM images corre-
sponding to 98 subjects in our case), xi ∈ Rp is the ith
example (GM image corresponding to the ith subject) or fea-
ture vector containing the GM voxels entering the analysis,
p ≈ 7.4 × 105 − 9.1 × 105 is the number of voxels enter-
ing the analysis depending on the normalization template of
choice, yi ∈ {1, 2} is the ith label (1 for CN and 2 for AD
participants), β0, β are the parameters of the model, and λ

is the regularization parameter.
The general form defined by equation (2) contains the

so-called elastic net penalty (Zou and Hastie [54]) which is a
linear combination of the L1 and L2 penalties that produces
a trade-off between the properties of both penalties. We set
the value of α to zero to enforce the L2 penalty, which simi-
larly to ridge regression (Hoerl [27]) has the effect of shrink-
ing the coefficients of the equation (2) final solution. The
GLMNET library solves the problem described above by
using a very efficient optimization technique called coordi-
nate descent (Friedman et al. [20]). The basic idea of the
method is to solve a sequence of one-dimensional optimiza-
tion problems by fixing all variables except one. The process
is iterated until convergence. This class of methods has been
independently developed by different groups (Daubechies
et al. [15]; Fu [23]; Krishnapuram and Hartemink [32]) and
its convergence has been proven for classes of convex opti-
mization problems (Tseng [47]). The optimal value of the
regularization parameter is estimated using cross-validation
as explained later.

2.8 Support vector machine

This is one of the more common techniques used in different
ways to analyze sMRI data (Ashburner [1]; Davatzikos
et al. [17]; Kloppel et al. [31]; Lao et al. [33]; Vemuri
et al. [50]) which is the one originally proposed by the
developers of this method (Boser et al. [5]; Vapnik [48]).
There are many sources describing in detail the principles
behind SVM (Bishop [4]; Hastie et al. [26]) and we
refer the reader to those while here we briefly describe our
implementation. Kloppel and colleagues used a hard-margin
linear SVM (HM-SVM) (Chu [11]; Kloppel et al. [31]),
while more recently Cuingnet and colleagues implemented
a soft-margin linear SVM (SM-SVM) (Cuingnet et al. [13]).
We implemented and evaluated versions of both algorithms.
Linear SVMs search for the hyperplane that separates two
classes with maximum margin. When the two classes are
separable, the hard-margin SVM (HM-SVM) formulation
can be applied. The soft-margin SVM allows dealing
with overlapping between classes by permitting some of
the training examples to be misclassified. Its classical
formulation (primal) is

min
β,b

1

2
‖β‖22 + C

N∑
i=1

ξi (3)

subject to

yi
(
βTxi + b

) ≥ 1− ξ, (4)

ξi ≥ 0, i = 1, . . . , N. (5)

In terms of the regularization framework, the formula-
tion of the soft-margin linear SVM can be recast as

min
β,b

N∑
i=1

max
(
0, 1− yi

(
βTxi + b

))
+ λ

p∑
j=1

β2
j , (6)

where λ = (2C)−1 plays the role of regularization parame-
ter (Bishop [4]). As evident in equation (6), the soft-margin
linear SVM, as originally developed, is an example of L2

penalized regularization technique. We will use the same
method here, but note that other variations of SVMs using
different types of penalties have been recently proposed (Fan
et al. [18]; Wang et al. [51]).

To solve the problem posed by equations (3), (4), (5),
or (6), we follow a similar methodology as described by
(Chu [11]) using the kernel approach based on the LIBSVM
library (Chih-Chung et al. [10]). Images after normaliza-
tion are vectorized and treated as examples. A linear kernel
matrix is generated by computing the inner products across
all examples. This is provided to the LIBSVM library as
a pre-computed kernel. For the SM-SVM, the C parame-
ter was tuned using cross-validation as explained below. To
produce the HM-SVM, we fixed a high value of C in this
case 104. The map of weights in the voxel space can be
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obtained as β =
∑nSV

i=1 yiaixi, where ai and nSV are the
coefficients and the number of support vectors, respectively,
but we did not generate maps in this work.

2.9 Cross-validation procedure

For PLR and SM-SVM methods, to achieve the two goals of
evaluating their generalization capabilities and estimating,
the optimal values of the regularization parameters, we
combined a scheme of two nested cross-validations (CV)
with grid search. This is done to avoid upward bias in the
estimates of accuracies produced by the CV procedure
(Chu [11]; Guyon and Elisseeff [25]; Ryali et al. [42];
Varma and Simon [49]). We implemented an external K1-
fold CV where at each step we leave one fold for testing
and the K1 − 1 remaining for training and validation.
These last two procedures are implemented by using a
nested K2-fold CV. We divide the K1-1 folds into K2

folds and we leave one fold for validation and K2 − 1

for training combined with a grid search to determine the
optimal parameters. The grid we used in our analyses was
λ = {0.5, 1, 5, 10, 11, 12.98, 99, 100, 200, 500, 1000} for
PLR and C = {2−6, 2−4., 0, .212, 214} for the SM-SVM. At
each grid point the classifier was trained using the training
data and its performance was assessed using the fold left
for validation by estimating the classification accuracy.
We selected the regularization parameters that produce
maximum average accuracy across the K2 folds of the
internal CV procedure. The classifier was then retrained
using the whole data in the K1 − 1 folds left for training
and validation and the selected optimal regularization
parameters. The classifier’s generalization capability was
then evaluated by computing the classification accuracy
using the fold originally left for testing in the external CV.
This was repeated K1 times and the average classification
accuracy is computed. Finally, the classifier weights were
computed using the whole data set and the average values of
the selected regularization parameters across the K1 folds.
In our analyses we used K1 = 10 and K2 = 10. In the case
of the HM-SVM because there is no tuning of regularization
parameters we used a conventional 10-fold CV to evaluate
the classifier’s generalization capability.

3 Evaluation

We computed overall classification accuracy, sensitivity and
specificity to evaluate classifier performance:

Acc =
TP + TN

TP + FN + TN + FP
, (7)

SEN =
TP

TP + FN
, (8)

SPE =
TN

TN + FP
, (9)

where TP are AD patients correctly identified as AD, TN are
controls correctly classified as controls, FN are AD patients
incorrectly identified as controls and FP are controls incor-
rectly identified as AD. To study the variation due to differ-
ent CV partitions we repeated the computation 10 times and
reported the mean and standard deviation of the three met-
rics described above. For simplicity all our analyses were
restricted to grey matter only (GM). Differences in mean
levels of accuracy, sensitivity, and specificity across these
repetitions were assessed using analyses of variance.

4 Results

In Table 1 we present results when the voxel-based
classification analyses (CN vs. AD) were performed using
non-smoothed data and the three methods described above.
Additionally, in Table 2 the results of analyses of variance
of summary measures across 10 trials are presented. The
first observation is that when the study customized template
generated using optimized data (ADNI12-Opt) was used, all
classification methods produced lower values of the metrics
(when compared to other templates results) both when
using raw or optimized sMRI data. Something similar but
in a much lesser degree occurred when the standard ICBM
template was employed with the optimized data or SVMs.

The use of raw or optimized data did not originate large
differences on classification performance when the study
customized templates based on raw data (ADNI12-Raw and
ADNI140-Raw) were employed for the analyses. Finally,
across all the four templates explored in this work, PLR
performance was significantly better than the two SVMs in
terms of the three metrics while the SVMs performed better
in terms of sensitivity when the study customized templates
ADNI12-Raw and ADNI140-Raw were used. In general,
no large differences in performance between the two SVM
based methods were observed.

In Tables 3 and 4 the results of the evaluation of
Gaussian smoothing effects on voxel-based classification
performance is presented for two methods (PLR and
HM-SVM) and three different templates (ADNI12-Raw,
ADNI140-Raw and ICBM). Smoothing the images led to
worse results according to all metrics when voxel-based
classification was performed based on the ICBM template.
This occurred for both classification methods and both raw
and optimized data. When the study customized template
ADNI12-Raw was used, the same trend of decreased
performance due to smoothing was observed for most
situations, with the exception of slight improvements
in overall accuracy and sensitivity when the PLR and
optimized images were combined.

Finally, when the template ADNI140-Raw was used,
the best results in this study according to all metrics were
achieved for both methods. This occurred when slight
smoothing (FWHM = 4mm) was applied to the images.
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Template Data Method ACC SEN SPE

ADNI12-Raw

Raw
PLR 85.4 (2.0) 82.5 (3.2) 88.8 (2.3)

SVM-HM 83.2 (1.6) 82.0 (2.7) 84.1 (4.5)
SVM-SM 84.7 (1.7) 82.8 (2.4) 87.1 (3.6)

Opt
PLR 85.3 (1.9) 80.9 (3.7) 91.0 (0.8)

SVM-HM 83.4 (1.2) 81.3 (2.6) 87.0 (2.2)
SVM-SM 84.3 (1.7) 81.6 (2.5) 87.4 (3.0)

ADNI12-Opt

Raw
PLR 79.3 (1.7) 76.7 (3.1) 83.1 (3.3)

SVM-HM 69.2 (3.0) 67.1 (6.9) 71.7 (4.0)
SVM-SM 68.7 (2.9) 69.0 (2.9) 73.1 (3.4)

Opt
PLR 79.3 (1.7) 77.2 (3.5) 81.4 (2.4)

SVM-HM 74.5 (2.3) 75.7 (3.7) 74.7 (3.3)
SVM-SM 75.8 (3.3) 77.1 (2.1) 76.3 (4.4)

ADNI140-
Raw

Raw
PLR 83.8 (1.2) 84.0 (3.1) 83.7 (2.2)

SVM-HM 85.6 (1.9) 83.8 (2.5) 87.8 (2.1)
SVM-SM 85.2 (1.2) 83.9 (2.3) 87.5 (1.8)

Opt
PLR 84.7 (2.8) 84.3 (3.5) 86.0 (4.6)

SVM-HM 82.0 (1.8) 82.5 (1.8) 82.9 (3.5)
SVM-SM 84.4 (1.6) 84.9 (2.7) 84.3 (1.8)

ICBM

Raw
PLR 85.4 (1.4) 82.1 (1.5) 89.9 (2.6)

SVM-HM 81.6 (1.3) 77.1 (3.1) 87.0 (2.4)
SVM-SM 80.9 (1.7) 77.4 (2.4) 85.6 (2.8)

Opt
PLR 80.7 (1.4) 81.4 (2.9) 81.2 (2.7)

SVM-HM 80.3 (2.0) 79.2 (2.2) 82.9 (2.5)
SVM-SM 78.9 (2.0) 78.3 (2.7) 80.2 (3.5)

Table 1: The performance of PLR, HM-SVM, and SM-SVM in terms of overall accuracy, sensitivity, and specificity is shown
for different normalization methods and types of data.

Attribute
Accuracy Sensitivity Specificity

Mean (SE) p-value Mean (SE) p-value Mean (SE) p-value

Template

ADNI12-Raw 84.4 (0.4)

< 0.001

81.9 (0.5)

< 0.001

87.6 (0.5)

< 0.001
ADNI12-Opt 74.5 (0.4) 73.8 (0.5) 76.7 (0.5)

ADNI140-Raw 84.3 (0.4) 83.9 (0.5) 85.4 (0.5)
ICBM 81.3 (0.4) 79.2 (0.5) 84.5 (0.5)

Data
Raw 81.1 (0.3)

0.89
79.0 (0.3)

0.003
84.1 (0.4)

0.02
Opt 81.1 (0.3) 80.4 (0.3) 82.9 (0.4)

Method
PLR 83.0 (0.3)

< 0.001

81.1 (0.4)
< 0.001

85.6 (0.4)
< 0.001SVM-HM 80.0 (0.3) 78.6 (0.4) 82.3 (0.4)

SVM-SM 80.3 (0.3) 79.4 (0.4) 82.7 (0.4)

Table 2: Results from analyses of variance of summary measures across 10 trials.

The application of more smoothing (FWHM = 8mm)
to the sMRI images led, in most of the cases, to worse
classification performances. The PLR tended to perform
better than the HM-SVM across all situations and produced
the best performances.

5 Discussion

The first important contribution of this work is the
introduction of PLR to solve classification problems of large
size that result when sMRI images are used for automatic
detection of AD. Contrary, to other high-dimensional
methods applied before that perform feature selection

(Davatzikos et al. [17]; Vemuri et al. [50]), dimension
reduction steps (Magnin et al. [35]; Teipel et al. [45]) or use
the kernel approach (Ashburner [1]; Cuingnet et al. [12];
Cuingnet et al. [14]; Kloppel et al. [31]), we approached the
sMRI classification problem as a large-scale regularization
problem using voxels as input features. We have shown
here that classification problems with a number of features
approaching 1 million can be solved with levels of accuracy
that are very competitive with other methods in the field
(Cuingnet et al. [13]). This is possible through the use
of coordinate-wise descent techniques implemented in
GLMNET. We compared PLR to the linear SVM approach
proposed by (Kloppel et al. [31]) and we found in this
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Template Data Method FWHM Accuracy Sensitivity Specificity

ADNI12-Raw

Raw

HM-SVM
NS 83.2 (1.6) 82.0 (2.7) 84.1 (4.5)
4 81.8 (1.7) 79.7 (2.4) 85.6 (2.5)
8 80.2 (1.6) 77.5 (3.5) 84.2 (2.6)

PLR
NS 85.4 (2.0) 82.5 (3.2) 88.8 (2.3)
4 83.5 (1.6) 81.4 (2.9) 86.6 (2.8)
8 81.3 (2.4) 79.4 (3.2) 84.0 (3.5)

Opt

HM-SVM
NS 83.4 (1.2) 81.3 (2.6) 87.0 (2.2)
4 82.8 (1.9) 80.5 (2.4) 86.6 (2.5)
8 79.8 (1.4) 77.7 (3.5) 84.0 (2.8)

PLR
NS 85.3 (1.9) 80.9 (3.7) 91.0 (0.8)
4 85.6 (1.8) 82.6 (1.4) 89.0 (3.9)
8 82.9 (2.5) 81.7 (3.7) 84.8 (2.6)

ADNI140-Raw

Raw

HM-SVM
NS 85.6 (1.9) 83.8 (2.5) 87.8 (2.1)
4 86.5 (2.2) 84.6 (1.5) 89.0 (2.3)
8 85.0 (1.7) 85.0 (2.4) 85.3 (3.6)

PLR
NS 83.8 (1.2) 84.0 (3.1) 83.7 (2.2)
4 88.6 (1.3) 84.8 (1.7) 92.8 (0.8)
8 86.0 (1.5) 83.2 (2.4) 88.5 (2.4)

Opt

HM-SVM
NS 82.0 (1.8) 82.5 (1.8) 82.9 (3.5)
4 85.3 (1.5) 84.9 (2.2) 85.1 (2.9)
8 85.3 (1.8) 84.1 (2.6) 86.2 (2.9)

PLR
NS 84.7 (2.8) 84.3 (3.5) 86.0 (4.6)
4 89.8 (1.3) 85.8 (3.6) 93.2 (2.9)
8 86.0 (1.5) 83.2 (2.4) 88.5 (2.4)

ICBM

Raw

HM-SVM
NS 81.6 (1.3) 77.1 (3.1) 87.0 (2.4)
4 77.2 (2.1) 74.9 (2.5) 80.8 (3.0)
8 73.1 (2.5) 72.7 (3.1) 74.6 (3.0)

PLR
NS 85.4 (1.4) 82.1 (1.5) 89.9 (2.6)
4 83.6 (1.6) 78.3 (3.6) 88.7 (3.0)
8 81.1 (2.1) 77.0 (3.6) 86.4 (2.7)

Opt

HM-SVM
NS 80.3 (2.0) 79.2 (2.2) 82.8 (2.5)
4 76.0 (2.2) 74.8 (3.0) 79.0 (3.8)
8 71.0 (2.5) 70.0 (4.1) 74.4 (4.1)

PLR
NS 80.7 (1.4) 81.4 (2.9) 81.2 (2.7)
4 77.9 (1.6) 75.8 (3.3) 81.0 (2.0)
8 73.3 (2.2) 69.9 (3.4) 78.4 (4.8)

Table 3: The performance of PLR, and HM-SVM in terms of overall accuracy, sensitivity, and specificity is shown for
different degrees of smoothness. NS stands for no smoothing.

study that PLR performed better across a wide range of
situations. PLR has two well-known advantages over SVM:
(1) it models the conditional-class probabilities that in this
application (AD automatic detection) could be directly
used as a metric to characterize the closeness of a new
sample to the two classes CN or AD. In other words,
it could be used as biomarker to characterize cognitive
status based on spatial brain patterns of atrophy derived
from sMRI images. The SVMs do not directly model
probabilities, although some approximations have been
proposed in the literature (Platt [41]). (2) It extends in a
natural way to the case of multi-class classification while
SVMs have to relay on different strategies (e.g., one versus
all, one versus one, etc.). It is worth to notice that while
PLR is relatively time-efficient, the hard-margin linear

SVM is much faster due to the use of kernels and the related
dimensionality reduction during the optimization phase. In a
computer with two 2.66 Ghz CPUs and using the MATLAB
parallel computing toolbox solving ICBM template-related
classification problems approaching one million variables
(≈ 9.1×105 voxels) and 98 images took less than 3 minutes
using HM-SVM while it takes around 1 hour to compute
PLR. The search for the PLR optimal regularization
parameter in a nested CV procedure is implemented in a
nonoptimized MATLAB code. A different implementation
based on C or FORTRAN will speed up PLR. One
interesting observation about the SVM method in this study
is that in the context of very large classification problems
it was not possible to achieve significant increases in
performance by tuning the regularization parameter via CV.
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Attribute
Accuracy Sensitivity Specificity

Mean (SE) p-value Mean (SE) p-value Mean (SE) p-value

Template
ADNI12-Raw 82.9 (0.3)

< 0.001

80.6 (0.3)
< 0.001

86.3 (0.4)
< 0.001ADNI40-Raw 85.7 (0.3) 84.2 (0.3) 87.4 (0.4)

ICBM 78.4 (0.3) 76.1 (0.3) 82.0 (0.4)

Data
Raw 82.9 (0.2)

< 0.001
80.6 (0.2)

0.13
86.0 (0.3)

< 0.001
Opt 81.8 (0.2) 80.0 (0.2) 84.5 (0.3)

Method
HM-SVM 81.1 (0.2)

< 0.001
79.6 (0.2)

< 0.001
83.7 (0.3)

< 0.001
LOG-2 83.6 (0.2) 81.0 (0.2) 86.8 (0.3)

FWHM
NS 83.4 (0.3)

< 0.001

81.8 (0.3)
< 0.001

86.0 (0.4)
< 0.0014 83.2 (0.3) 80.7 (0.3) 86.5 (0.4)

8 80.4 (0.3) 78.4 (0.3) 83.3 (0.4)

Table 4: Results from analyses of variance of summary measures across 10 trials.

This behavior of SVMs has been reported before by (Hastie
et al. [26, page 658]). The second important contribution of
this study is that it provides valuable information about how
high-dimensional classification methods are affected by
image pre-processing steps such as normalization, choice
of template, and smoothing, and the effects on classification
performance of the optimization process designed by ADNI
to increase the quality of the images. Since the ADNI
database is a huge asset for the neuroimaging community
and ANTS is a very successful normalization software this
information is important. In the situation when the data
were not smoothed we observed the following.

The template generated using optimized images
(ADNI12-Opt) produced clearly the worst results for
all methods and for both set of images. This suggests
that ANTS performance was affected by the optimization
process used by ADNI and that when processing ADNI
sMRI images using ANTS, it is better to use the raw
data. We were not able to find a clear explanation for this
effect though we believe that ANTS normalization had
difficulties to deal with some of the ADNI corrections
made to improve the sMRI images quality.The two study
customized templates built using raw images of 12 and 140
subjects produced similar overall accuracy but the increase
of the number of subjects led to increases in sensitivity and
losses in specificity.

The standard ICBM template in general produced
performances inferior to the customized templates with
the exception of the combination of PLR with raw data.
It should be noticed that generating the study customized
templates could be very time-consuming especially if the
number of subjects is large. The combination of ICBM, PLR
and raw images reached similar classification performance
without the additional computational expenses of generating
the customized templates. It could be a option when there is
a lack of powerful computational resources. In general, not
only PLR produced better performances when compared to
SVMs in terms of all metrics across all types of data and
templates, but also was more robust to situations that were

adverse to voxel-based classification, such as the use of opti-
mized images to built the custom templates (ADNI12-Opt).

When we smoothed the data it was observed that
the ICBM template generated the worse results across
methods and types of images with a clear trend of decreased
classification performance when the amount of smoothing
was increased. The ADNI12-Raw custom template showed
very often the same trend though in general the results
were better than the ones obtained with the standard
ICBM template. However, building a custom template
with increased number of subjects combined with slight
smoothing (FWHM = 4mm) yielded the best results in this
work. All this suggests that the effect of smoothing depends
on the type of template. If a standard or a custom template
generated using a relatively small number of subjects
is used, smoothing the images seemed to lead to worse
classification results. The additional effort in generating
a custom template with a large number of subjects seems
to pay off when combined with slight smoothing of the
images. Even in this case application of greater amount
of smoothing (FWHM = 8mm) leads to decreases in
classification performance. These findings are in relative
agreement with those reported by Kloppel et al. [31], who
did not apply any smoothing to the images, suggesting that
no smoothing produced the best results. This contrasts with
the heavier amount of smoothing usually recommended in
the past (8–12 mm) for univariate voxel-based analyses such
as voxel-based morphometry (Good et al. [24]) and also for
other sMRI classification methods (Davatzikos et al. [17];
Vemuri et al. [50]) (FWHM = 8mm). This seems to
indicate a decrease need of the degree of smoothing needed
when images are normalized with SYN and DARTEL.
A possible explanation is that both methods are based
on diffeomorphic transformations that are estimated
via regularization approaches which include penalties
to impose smoothing to the estimated transformation.
Therefore, during the normalization process some degree of
smoothness could be induced to the images decreasing the
need of smoothing afterward.
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We need to point out several weaknesses in our study:
(1) we did not implement the exact methodology introduced
by Kloppel et al. [31], since they based their normalization
on DARTEL (Ashburner [1]) a different high-dimensional
warping method. For the HM-SVM we fixed the parame-
ter C to a high value while the use a different procedure;
(2) due to limitations in computational resources and time,
we did not study other situations that could have helped to
clarify why normalization templates built using optimized
images led to worse results and though we made efforts to
find an explanation for that effect we were not able to do
so, and (3) we used in this work the L2 PLR by setting
α = 0 in equation (2) mostly for computational reasons
since our main goal was to study the impact of different pre-
processing factors on PLR prediction performance. Prelim-
inary computations (not presented here) using the L1 PLR
showed decrease in performance with respect to the L2 PLR
and very sparse discriminative maps while the elastic net
PLR produced similar performance while being much more
time-consuming than L2 PLR. This is an issue that requires
more careful evaluation in the future.

6 Conclusion

In this work we have introduced a new application of
PLR for high-dimensional classification of structural MRI
images. We have compared its performance with another
extant methodology based on SVMs using ADNI data. Our
results suggest that our approach often produces superior
performance in prediction. We additionally have evaluated
the influence of different image pre-processing factors on
voxel-based classification procedures when combined with
ANTS normalization. Our work provides more evidence
about the high accuracy of these voxel-based procedures
when solving classification problems approaching one
million variables (voxels) related to sMRI images of CN
and AD subjects. Future work will address comparisons
of different high-dimensional warping techniques such
as DARTEL and HAMMER (Fan et al. [19]), study of
the influence of the type penalties and the performance
of conditional probabilities produced by the PLR as
biomarkers for early AD prediction.
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